

Towards Efficient Finite Element Model Review

Dr. Richard Witasse, Plaxis bv (based on the original presentation of Dr. Brinkgreve)

Topics

- FEA in geotechnical engineering
- Validation & verification
- FE modelling: illustrated traps & pitfalls

Introduction

Simple hand calculations

V

Graphical / analytical methods

V

Conventional design methods

N

Simple numerical methods

7

2D finite element analysis (1990→)

V

3D finite element analysis (2000→)

FEA in geotechnical engineering

Design cycle:

- Design phase
 - Preliminary design
 - Final design
- Tender phase
 - Modified / alternative design
- Construction phase
 - Construction / observation
- Maintenance phase
 - Improvements

FEA in geotechnical engineering

Key success factors for geotechnical FEA:

- Sufficient data
 - Soil data
 - Construction details
- Model accuracy
 - Competence of engineer
 - Software features and logic
- Calculation performance
 - Efficiency and accuracy of software
 - Computer power
- Interpretation of results
 - Competence of engineer
- Validation & Verification

Validation & Verification

Validation is essential in finite element analysis

- Validation : Matching reality
 Engineer
- Verification: Matching known solutions > Software

Geotechnical Committee (NAFEMS, etc)

- Document on parameter selection
- Document on Validation of FEA
- Case histories
- Literature reviews
- Supporting Validation & Verification in geotechnical FEA

FE modelling: Traps & pitfalls

```
Geometric modelling

Loads & boundary conditions

Material models + parameters

Mesh generation

Initial conditions

Calculation phases

Results (interpretation)
```


Type of model?

- O Plane strain
- **O** Axisymmetry
- O Full 3D

What if 2D model is used?

- O Conservative
- Optimistic

Plane strain

Pile modelling

Where to put your model boundaries?

Stability analysis

Drained deformation analysis

Undrained deformation analysis

Dynamic analysis

Traps & pitfalls: Interface elements

Interfaces:

Soil-structure
Interaction

Be careful:

- > 3D situations in 2D
- > Piles

Extended interfaces:

- No strength reduction
- Improve stress results at tip/corners

Traps & pitfalls: Material models

Which model to use?

- > Consider stress paths, required features
- Possibilities & limitations of models

Selection of model parameters

- Sufficient soil data?
- > Stress level, stress path, anisotropy

Traps & pitfalls: Material models choice

Simple vs advanced constitutive models

Parameters	Mohr Coulomb	Hardening Soil
Moduli	E	E ₅₀ ^{ref}
	-	E ref oed
	-	$m{E}_{ur}^{ref}$
	-	Power m
Poisson ratio	V	v _{ur}
Cohesion	С	
Friction angle	φ	
Dilatancy angle	Ψ	

Traps & Pitfalls: Stress paths

 Illustration for excavation problem

Drained or undrained behaviour?

Dimensionless time factor T

$$\mathbf{T} = \frac{\mathbf{k} \mathbf{E}_{oed}}{\gamma_{w} \mathbf{D}^{2}} \mathbf{t}$$

 $T < 10^{-4}$ (U < 1%): Undrained conditions

T > 2 (U > 99%): Drained conditions

How to model undrained behaviour?

- A: Effective stress analysis + K_w/n + effective parameters
- O B: Effective stress analysis + $K_w/n + E', v' + S_u$
- O C: Total stress analysis + undrained parameters

Appropriate pore pressure, effective stress, shear strength?

Undrained A:

 $\gt S_u$ is a result of the calculation (depending on soil model)

Appropriate pore pressure, effective stress, shear strength?

Undrained A:

 \succ S_{ij} is a result of the calculation (depending on soil model)

Appropriate pore pressure, effective stress, shear strength?

Undrained B:

 $\gt S_u$ is an input value

Appropriate pore pressure, effective stress, shear strength?

Undrained C:

 \triangleright S_u is an input value

Traps & pitfalls: Mesh generation

Element type:

- Interpolation order
- Locking

Shape

Traps & pitfalls: Mesh generation

Global fineness Local refinement

Traps & pitfalls: Initial conditions

Initial stresses:

- Initial total stress
- Initial pore pressure
- Initial effective stress

Initial value of state parameters:

- Initial void ratio
- Pre-consolidation stress
- Other state parameters

Gravity loading

Traps & pitfalls: Initial conditions

Existing structures:

Requires several phases to set up initial conditions

Traps & pitfalls: Pore pressures

Using general phreatic level

Using local phreatic level and cluster interpolation

Traps & pitfalls: Pore pressures

Using groundwater flow

Closed bottom boundary

Traps & pitfalls: Calculation settings

Tolerated error TE

Traps & pitfalls: Safety Factor Analysis

 Safety factor based on Phi-c reduction method has a different meaning that safety factor used by structural engineers

$$\sum M_{sf} = \frac{\text{available soil resistance}}{\text{mobilized soil resistance}}$$

Traps & pitfalls: Phi-c Reduction Analysis

Mesh Sensitivity

Conclusions

- FEM: powerful tool in different phases of design process
- Key success factors:
 - Sufficient data
 - Reliable & efficient software
 - Competence of engineer
- Plaxis currently working on a visual checklist for efficient model review
 - Make the engineers aware of the traps and pitfalls
 - Supported by visual example

Questions?

www.plaxis.nl

Plaxis bv Headquarter Tel +31 (0)15 2517 720 Delftechpark 53 2628 XJ Delft The Netherlands

Plaxis bv Asia Singapore Tel +65 6325 4191 16 Jalan Kilang Timor #05-08 Redhill Forum 159308 Singapore